Age-Associated Increase in Skin Fibroblast-Derived Prostaglandin E2 Contributes to Reduced Collagen Levels in Elderly Human Skin.
نویسندگان
چکیده
Production of type I collagen declines during aging, leading to skin thinning and impaired function. Prostaglandin E2 (PGE2) is a pleiotropic lipid mediator that is synthesized from arachidonic acid by the sequential actions of cyclooxygenases (COX) and PGE synthases (PTGES). PGE2 inhibits collagen production by fibroblasts in vitro. We report that PTGES1 and COX2 progressively increase with aging in sun-protected human skin. PTGES1 and COX2 mRNA were increased 3.4-fold and 2.7-fold, respectively, in the dermis of elderly (>80 years) versus young (21-30 years) individuals. Fibroblasts were the major cell source of both enzymes. PGE2 levels were increased 70% in elderly skin. Fibroblasts in aged skin display reduced spreading due to collagen fibril fragmentation. To investigate the relationship between spreading and PGE2 synthesis, fibroblasts were cultured on micropost arrays or hydrogels of varying mechanical compliance. Reduced spreading/mechanical force resulted in increased expression of both PTGES1 and COX2 and elevated levels of PGE2. Inhibition of PGE2 synthesis by diclofenac enhanced collagen production in skin organ cultures. These data suggest that reduced spreading/mechanical force of fibroblasts in aged skin elevates PGE2 production, contributing to reduced collagen production. Inhibition of PGE2 production may be therapeutically beneficial for combating age-associated collagen deficit in human skin.
منابع مشابه
Age-associated increase of skin fibroblast-derived prostaglandin E2 contributes to reduced collagen levels in elderly human skin
متن کامل
Gene expression changes of collagen І and ІІІ in human skin fibroblast cells in effect of microalga Chlorella vulgaris extract and compared to vitamin C
Skin aging is a biological process that is due to the reduction of collagen production and increase of multiple enzymes, including matrix metalloproteinase (MMPS), which degrade collagen. Chlorella vulgaris is a marine microalga and its beneficial effects on the skin make it a proper ingredient to be used in anti-aging products. In this study, the effect of C. vulgaris extract comparing to vita...
متن کاملIn vitro Co-Culture of Human Skin Keratinocytes and Fibroblasts on a Biocompatible and Biodegradable Scaffold
Background: Extensive full-thickness burns require replacement of both epidermis and dermis. In designing skin replacements, the goal has been to re-create this model and make a product which has both essential components. Methods: In the present study, we developed procedures for establishing confluent, stratified layers of cultured human keratinocytes on the surface of modified collagen-chito...
متن کاملAge-associated reduction of cellular spreading/mechanical force up-regulates matrix metalloproteinase-1 expression and collagen fibril fragmentation via c-Jun/AP-1 in human dermal fibroblasts
The dermal compartment of human skin is largely composed of dense collagen-rich fibrils, which provide structural and mechanical support. Skin dermal fibroblasts, the major collagen-producing cells, are interact with collagen fibrils to maintain cell spreading and mechanical force for function. A characteristic feature of aged human skin is fragmentation of collagen fibrils, which is initiated ...
متن کاملIsolation and Evaluation of Collagen from the Fish (Thunnus Tonggol) Skin: A Biological Material for Medical Tissue Engineering
Introduction: Collagen bears many applications in pharmacy and medicine, health and cosmetic products as well as food industry. In recent years, much attention has been paid to separation of collagen from marine organisms arising from the fact that its use in the diet is not restricted and triggers no risk of contagious diseases as well as religious restrictions. Moreover, fish collagen is uniq...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of investigative dermatology
دوره 135 9 شماره
صفحات -
تاریخ انتشار 2015